同林微纳米气泡发生器使水与气高度相溶混合,经过精心设计的水利通道,经过高速旋转、撞击、切割,瞬时弥散释放出高密度的、均匀的微纳米气泡,形成云一般“乳白色”的气液混合体。其产生的气泡粒径在 200 纳米(nm)~50微米(μm)之间 ,气泡含率 85-90%。
微纳米超氧气泡发生器通过特殊的力学通道设计,可保证在产生丰富微纳米气泡的同时,有足够宽敞的水利通道允许含杂质水流通过,对含有大量杂质的化工废水、各类养殖水、含水污泥等都有很好的通过效果,不会产生任何堵塞。
微纳米超氧气泡发生器,不需要压力容器罐等辅助设施,安装调试简单,能耗低,正常工作环境下使用寿命可长达5年以上,终生成本价以旧换新。本发生器产生的微纳米气泡在清水中测试停留时间达一周以上;快速使水体含氧量达到超饱和状态,饱和的氧气有效的激活了水体生态链中的微生物和补充的低氧菌种,可短期形成黑臭河水体变清澈的效果。
参数
小型微纳米气泡机功率;72W电压:220V流量:150L/h尺寸:340*300*1400mm材质:塑料重量:5.2kg气泡粒径:50-200纳米进气方式:负压进气气体介质:空气,纯氧,二氧化碳,臭氧、氢气等臭氧微纳米气泡工作原理“臭氧微纳米气泡”是纳米级的水气泡,它使水分子的原子团变的更小、臭氧微纳米气泡中的氧容易溶入原子团的间隙中,同时氧分子打破了水的界面使超微细气泡更容易溶入水中;水分子团始终进行着“布朗运动”,不断地进行不规则【布朗运动:1827年,苏格兰植物学家R·布朗发现水中的花粉及其它悬浮的微小颗粒不停地作不规则的曲线运动,称为布朗运动】冲撞。在“布朗运动”的同时,超氧纳米气泡也沉降、破裂;超氧纳米气泡的会合期【超氧纳米气泡的寿命】很长可为24天左右。悬浮物的吸附去除微纳米气泡不仅表面电荷产生的电位高,而且比表面积很大,因此将微纳米技术与混凝工艺联用在废水预处理中,对悬浮物和油类表现出了良好的吸附效果与高效的去除率,对COD、氨氮及总磷也具有较好的去除效果。难降解有机污染物的强化分解微纳米气泡破裂时释放出的羟基自由基,可氧化分解很多有机污染物,目前在难降解废水处理与污泥处理方面,已表现出了潜在的应用前景。为了促使微纳米气泡在水中能够产生更多的羟基自由基,常采用其它强氧化手段进行协同作用,如紫外线、纯氧以及臭氧等强氧化手段,以更好地发挥对废水中有机污染物的氧化分解作用。
Q:O3+UV降解耐臭氧微量有机污染物(OR-MOPs)研究
A:O3+UV降解耐臭氧微量有机污染物(OR-MOPs)研究 一、摘要 臭氧(O3)已被广泛应用于水深度处理中;
Q:臭氧纳米气泡机的优势
A:臭氧纳米气泡机的优势 近年来,包括臭氧纳米气泡在内的基于纳米气泡的方法已广泛用于水、;
Q:Purenanotech PNT纳米气泡机的不同之处
A:Purenanotech PNT纳米气泡机的不同之处 市场上可用的大多数精细气泡发生器都是用于产生微气泡的;
Q:臭氧处理的常见污染物以及氧化产生的副产品介
A:臭氧处理的常见污染物以及氧化产生的副产品介绍 下面列出了用臭氧处理的常见污染物以及氧;
Q:河网水中COD>6,臭氧投加量需要多少呢
A:河网水中COD>6,臭氧投加量需要多少呢 河网水和湖库水,还有纯净水,泳池水等,臭氧投加量;
Q:电晕放电臭氧发生器工作原理
A:臭氧发生器通过使氧气或干燥的空气通过高压电场或电晕产生臭氧。O2键分裂,释放出氧原子(;
Q:纳米气泡机可以延长臭氧在水中的半衰期吗
A:纳米气泡机可以延长臭氧在水中的半衰期吗 臭氧纳米气泡是直径小于 0.0002 毫米的微小气泡,;
Q:臭氧微纳米气泡机处理中药废水研究内容
A:臭氧微纳米气泡机处理中药废水实验研究 随着生活水平的提高,人们对医药卫生服务的需求也;
Q:催化剂制备工艺和反应操作条件对废水COD去除率的影响
A:催化剂制备工艺和反应操作条件对废水COD去除率的影响 近年来,难降解有机污染物的降解问题;
Q:臭氧处理对SARS-CoV-2污染个人防护用品的影响
A:臭氧处理对SARS-CoV-2污染个人防护用品的影响 摘要: 背景:严重急性呼吸综合征冠状病毒2 (SARS-;
Q:臭氧与过氧化钙(O3/CaO2)降解甲基红染料废水研究
A:纺织品印染废水排放量大,组成复杂,污染物浓度高,其中含有大量结构复杂的染料和化合物[1].色;
Q:臭氧氧化印染工业园废水影响因素研究
A:臭氧氧化印染工业园废水影响因素研究 印染废水具有污染物成分复杂、高色度、高浊度、高;
Q:催化臭氧氧化法处理煤化工高盐废水效能分析
A:催化臭氧氧化法处理煤化工高盐废水效能分析 1、废水水质分析 实验用水为中国石化长城能源;
Q:【ESE研究论文】臭氧催化剂定制化制备方法
A:【ESE研究论文】基于荧光光谱和机器学习的臭氧催化剂定制化制备方法 文章亮点 1. 臭氧催化剂;
Q:CuMn2O4 催化臭氧氧化实验材料与方法
A:CuMn2O4 催化臭氧氧化实验材料与方法 近年来,由于高级氧化技术可以产生大量活性氧组分 (RO;
Q:臭氧处理絮凝膜浓缩物中OBPs的分子特征和形成研究
A:臭氧处理絮凝膜浓缩物中OBPs的分子特征和形成研究 垃圾渗滤液是在垃圾填埋场和废物发电厂;